Seminar Digital Pathology and Deep Learning [SemDP] WiSe21/22 /CoursesID:2763
- Most recent entry on 2022-02-13

Organisational Unit

Friedrich-Alexander-Universität Erlangen-Nürnberg

Recording type

Seminar

Via

IdM-login / Studon

Language

Lecturers:
Prof. Katharina Breininger, PD Dr. Samir Jabari, Christian Marzahl, M.Sc.
Prof. Dr. med. Ingmar Blümke

Description:
Pathology is the study of diseases and aims to deliver a fine-grained diagnosis to understand processes in the body as well as to enable targeted treatment. In this area, the opportunities for digital image processing are vast: While the need for precision medicine, i.e., taking into account various co-dependencies when formulating the best possible treatment for a patient, is high, the number of pathologists ist not increasing accordingly. Deep learning-based techniques can be used for different objectives in this scope. Examples include screening large microscopy images for specific rare events, providing visual augmentation with analysis data. Additionally, the availability of massive data collections, including genomics and further biological factors, can be utilized to determine specific information about diseases that were previously unavailable.

Associated Clips

Episode
Title
Lecturer
Updated
Via
Duration
Media
1
Introduction
Prof. Eva Katharina Breininger
2021-10-25
IdM-login / Studon
01:26:00
2
Introduction to pathology
PD Dr. Samir Jabari
2021-11-05
IdM-login / Studon
01:21:03
3
Introduction to Practical Deep Learning
Prof. Eva Katharina Breininger
2021-11-09
IdM-login / Studon
01:21:46
4
Alex Muthumbi - Histopathology Quality Control and Artifact Detection
Prof. Eva Katharina Breininger
2022-01-19
IdM-login / Studon
00:40:17
5
Luisa Neubig - Public Datasets and Challenges
Prof. Eva Katharina Breininger
2022-01-19
IdM-login / Studon
00:37:01
6
Veronica Burkina - Histology and Tissue Segmentation
Prof. Eva Katharina Breininger
2022-01-19
IdM-login / Studon
00:38:17
7
Diksha Palasamudram Dinesh - Image Registration for Histology
Prof. Eva Katharina Breininger
2022-01-19
IdM-login / Studon
00:37:22
8
Roland Stolz - Annotation and Noisy Labels
Prof. Eva Katharina Breininger
2022-02-13
IdM-login / Studon
00:51:09

More courses from Prof. Eva Katharina Breininger

Maier, Andreas
Prof. Eva Katharina Breininger
lecture
2020-02-04
Free
Who is
Prof. Eva Katharina Breininger
2023-09-05
Free
Maier, Andreas
Prof. Eva Katharina Breininger
lecture
2019-07-25
Free
Schloss1
Prof. Eva Katharina Breininger
lecture
2021-06-18
IdM-login / Studon
Schloss1
Prof. Eva Katharina Breininger
lecture
2020-11-10
IdM-login / Studon