Seminar Advances in Deep Learning for Time Series (SoSe25) [SerienID : 4236]
Main topics:
- State-of-the-art deep learning approaches for time series modelling and analysis
- Explainable AI (XAI) methods for time series
- Multimodal learning
Description:
The field of deep learning for time series data is growing rapidly, enabling breakthroughs in areas such as healthcare, manufacturing, and logistics. This seminar leverages expertise in time series analysis, explainable AI (XAI) for time series, and multimodal learning, to equip students with cutting-edge techniques for handling and interpreting time series data in real-world contexts.
The seminar will explore advances in deep learning with practical, hands-on work using the Tool Tracking dataset, which employs smart sensors in tools to improve efficiency and accuracy in manual production processes.
The blended will provide Master's students the opportunity to deepen their knowledge of deep learning for time series data. Combining interactive lectures with collaborative projects, students will gain experience applying deep learning methods to production datasets from Tool Tracking smart sensors. The seminar will feature theoretical foundations, hands-on coding exercises, and algorithmic improvements tailored to real-world applications.
The structure is as follows:
- Lectures: Online lectures, complemented by interactive Q&A sessions.
- Practical projects: Students will work in small international groups over three months, improving Tool Tracking data analysis pipelines.
Face-to-face workshops: Alternating between FAU and PUCV, in a hybrid format, workshops will foster deeper engagement with seminar topics through in-person teaching and project presentations.
After completing the module, students
- Master advanced concepts in time series analysis and multimodal learning.
- Apply deep learning methods to complex, multimodal production datasets.
- Develop XAI techniques to enhance model interpretability for time series.
- Optimize the Human-in-the-Loop cost with suitables approaches for time series
- Create or improve algorithms for analyzing data from smart sensors in tools.
- Deliver structured scientific presentations on their work.
- References
- Goodfellow, I. (2016). Deep learning (Vol. 196). MIT press.
- Bishop, C. M., & Bishop, H. (2023). Deep learning: Foundations and concepts. Springer Nature.
- Hamilton, J. D. (2020). Time series analysis. Princeton university press.
- Löffler, C., Lai, W. C., Eskofier, B., Zanca, D., Schmidt, L., & Mutschler, C. (2022). Don't Get Me Wrong: How to Apply Deep Visual Interpretations to Time Series. arXiv preprint arXiv:2203.07861.
- Schlieper, P., Dombrowski, M., Nguyen, A., Zanca, D., & Eskofier, B. (2024). Data-Centric Benchmarking of Neural Network Architectures for the Univariate Time Series Forecasting Task. Forecasting, 6(3), 718.
- Dietz, S., Altstidl, T., Zanca, D., Eskofier, B., & Nguyen, A. (2024, June). How Intermodal Interaction Affects the Performance of Deep Multimodal Fusion for Mixed-Type Time Series. In 2024 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
- https://github.com/mutschcr/tool-tracking
Syllabus
- Intro to Time Series Analysis
- Deep Learning Models for Time Series Analysis
- Introducing the challenges of the Tool Tracking dataset
- Domain Adaptation and Fine-tuning
- Reducing Annotation Cost via Active Learning
- Semi-supervised Learning for Time Series
- On the State of The Art of Deep Learning for Time Series
- Bias in Deep Learning and Ethics considerations
- Introduction to Explainable AI (XAI): a survey
- XAI for Time Series models
deep learning
time series
Semester
Sommersemester 2025
Lehrenden
Zugang via
Nur für Portal
aktualisiert
2025-10-06 14:56:29
Abonnements
4
-
-
#1Nur für PortalOrganizational informationDario Zanca2025-04-23 Sommersemester 20251Organizational informationDario Zanca2025-04-23 Sommersemester 2025Nur für PortalGesperrt clip
-
#2Nur für PortalMotivation and ExamplesDario Zanca2025-04-23 Sommersemester 20252Motivation and ExamplesDario Zanca2025-04-23 Sommersemester 2025Nur für PortalGesperrt clip
-
#3Nur für PortalDefinitionsDario Zanca2025-04-23 Sommersemester 2025
-
#4Nur für PortalTypes of MLDario Zanca2025-04-23 Sommersemester 2025
-
#5Nur für PortalML PipelineDario Zanca2025-04-23 Sommersemester 2025
-
#6Nur für PortalML Tasks (for time series)Dario Zanca2025-04-23 Sommersemester 20256ML Tasks (for time series)Dario Zanca2025-04-23 Sommersemester 2025Nur für PortalGesperrt clip
-
#7Nur für PortalRecap and conclusionsDario Zanca2025-04-23 Sommersemester 20257Recap and conclusionsDario Zanca2025-04-23 Sommersemester 2025Nur für PortalGesperrt clip
-
-
-
#1Nur für PortalIntroductionDario Zanca2025-05-11 Sommersemester 2025
-
#2Nur für PortalIntroduction to Deep Learning (DL)Dario Zanca2025-05-11 Sommersemester 20252Introduction to Deep Learning (DL)Dario Zanca2025-05-11 Sommersemester 2025Nur für PortalGesperrt clip
-
#3Nur für PortalConvolutional Neural Networks (CNNs)Dario Zanca2025-05-11 Sommersemester 20253Convolutional Neural Networks (CNNs)Dario Zanca2025-05-11 Sommersemester 2025Nur für PortalGesperrt clip
-
#4Nur für PortalRNNs and LSTMsDario Zanca2025-05-11 Sommersemester 2025
-
#5Nur für PortalTransformersDario Zanca2025-05-11 Sommersemester 2025
-
#6Nur für PortalConclusionsDario Zanca2025-05-11 Sommersemester 2025
-
-
-
#1Nur für PortalIntroductionNaga Venkata Sai Jitin Jami2025-05-16 Sommersemester 20251IntroductionNaga Venkata Sai Jitin Jami2025-05-16 Sommersemester 2025Nur für PortalGesperrt clip
-
#2Nur für PortalTime-aware modelsNaga Venkata Sai Jitin Jami2025-05-16 Sommersemester 20252Time-aware modelsNaga Venkata Sai Jitin Jami2025-05-16 Sommersemester 2025Nur für PortalGesperrt clip
-
#3Nur für PortalOrdinary Differential Equations (ODE)Naga Venkata Sai Jitin Jami2025-05-16 Sommersemester 20253Ordinary Differential Equations (ODE)Naga Venkata Sai Jitin Jami2025-05-16 Sommersemester 2025Nur für PortalGesperrt clip
-
#4Nur für PortalResidual network and ODEnetNaga Venkata Sai Jitin Jami2025-05-16 Sommersemester 20254Residual network and ODEnetNaga Venkata Sai Jitin Jami2025-05-16 Sommersemester 2025Nur für PortalGesperrt clip
-
#5Nur für PortalBackpropagation in ODEnetNaga Venkata Sai Jitin Jami2025-05-16 Sommersemester 20255Backpropagation in ODEnetNaga Venkata Sai Jitin Jami2025-05-16 Sommersemester 2025Nur für PortalGesperrt clip
-
#6Nur für PortalApplication of ODEnet on time seriesNaga Venkata Sai Jitin Jami2025-05-16 Sommersemester 20256Application of ODEnet on time seriesNaga Venkata Sai Jitin Jami2025-05-16 Sommersemester 2025Nur für PortalGesperrt clip
-