Seminar Advances in Deep Learning for Time Series (SoSe25) [SerienID : 4236]
Main topics: 
  • State-of-the-art deep learning approaches for time series modelling and analysis 
  • Explainable AI (XAI) methods for time series
  • Multimodal learning
 
Description:
The field of deep learning for time series data is growing rapidly, enabling breakthroughs in areas such as healthcare, manufacturing, and logistics. This seminar leverages expertise in time series analysis, explainable AI (XAI) for time series, and multimodal learning, to equip students with cutting-edge techniques for handling and interpreting time series data in real-world contexts. 
The seminar will explore advances in deep learning with practical, hands-on work using the Tool Tracking dataset, which employs smart sensors in tools to improve efficiency and accuracy in manual production processes.
The blended will provide Master's students the opportunity to deepen their knowledge of deep learning for time series data. Combining interactive lectures with collaborative projects, students will gain experience applying deep learning methods to production datasets from Tool Tracking smart sensors. The seminar will feature theoretical foundations, hands-on coding exercises, and algorithmic improvements tailored to real-world applications.
The structure is as follows:
  • Lectures: Online lectures, complemented by interactive Q&A sessions.
  • Practical projects: Students will work in small international groups over three months, improving Tool Tracking data analysis pipelines.
 Face-to-face workshops: Alternating between FAU and PUCV, in a hybrid format, workshops will foster deeper engagement with seminar topics through in-person teaching and project presentations.
  
After completing the module, students
  • Master advanced concepts in time series analysis and multimodal learning.
  • Apply deep learning methods to complex, multimodal production datasets.
  • Develop XAI techniques to enhance model interpretability for time series.
  • Optimize the Human-in-the-Loop cost with suitables approaches for time series
  • Create or improve algorithms for analyzing data from smart sensors in tools.
  • Deliver structured scientific presentations on their work.
  1. References
  2. Goodfellow, I. (2016). Deep learning (Vol. 196). MIT press.
  3. Bishop, C. M., & Bishop, H. (2023). Deep learning: Foundations and concepts. Springer Nature.
  4. Hamilton, J. D. (2020). Time series analysis. Princeton university press.
  5. Löffler, C., Lai, W. C., Eskofier, B., Zanca, D., Schmidt, L., & Mutschler, C. (2022). Don't Get Me Wrong: How to Apply Deep Visual Interpretations to Time Series. arXiv preprint arXiv:2203.07861.
  6. Schlieper, P., Dombrowski, M., Nguyen, A., Zanca, D., & Eskofier, B. (2024). Data-Centric Benchmarking of Neural Network Architectures for the Univariate Time Series Forecasting Task. Forecasting, 6(3), 718.
  7. Dietz, S., Altstidl, T., Zanca, D., Eskofier, B., & Nguyen, A. (2024, June). How Intermodal Interaction Affects the Performance of Deep Multimodal Fusion for Mixed-Type Time Series. In 2024 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
  8. https://github.com/mutschcr/tool-tracking
Syllabus
  1. Intro to Time Series Analysis
  2. Deep Learning Models for Time Series Analysis
  3. Introducing the challenges of the Tool Tracking dataset
  4. Domain Adaptation and Fine-tuning
  5. Reducing Annotation Cost via Active Learning  
  6. Semi-supervised Learning for Time Series 
  7. On the State of The Art of Deep Learning for Time Series
  8. Bias in Deep Learning and Ethics considerations
  9. Introduction to Explainable AI (XAI): a survey
  10. XAI for Time Series models
deep learning
time series

Semester

Sommersemester 2025

Lehrenden

Zugang via

Nur für Portal

aktualisiert

2025-10-06 14:56:29

Abonnements

4

    • #1
      Nur für Portal
      Organizational information
      Dario Zanca
      2025-04-23 Sommersemester 2025
    • #2
      Nur für Portal
      Motivation and Examples
      Dario Zanca
      2025-04-23 Sommersemester 2025
    • #3
      Nur für Portal
      Definitions
      Dario Zanca
      2025-04-23 Sommersemester 2025
    • #4
      Nur für Portal
      Types of ML
      Dario Zanca
      2025-04-23 Sommersemester 2025
    • #5
      Nur für Portal
      ML Pipeline
      Dario Zanca
      2025-04-23 Sommersemester 2025
    • #6
      Nur für Portal
      ML Tasks (for time series)
      Dario Zanca
      2025-04-23 Sommersemester 2025
    • #7
      Nur für Portal
      Recap and conclusions
      Dario Zanca
      2025-04-23 Sommersemester 2025
    • #1
      Nur für Portal
      The Tool Tracking Dataset
      Dario Zanca
      2025-04-30 Sommersemester 2025
    • #1
      Nur für Portal
      Introduction
      Dario Zanca
      2025-05-11 Sommersemester 2025
    • #2
      Nur für Portal
      Introduction to Deep Learning (DL)
      Dario Zanca
      2025-05-11 Sommersemester 2025
    • #3
      Nur für Portal
      Convolutional Neural Networks (CNNs)
      Dario Zanca
      2025-05-11 Sommersemester 2025
    • #4
      Nur für Portal
      RNNs and LSTMs
      Dario Zanca
      2025-05-11 Sommersemester 2025
    • #5
      Nur für Portal
      Transformers
      Dario Zanca
      2025-05-11 Sommersemester 2025
    • #6
      Nur für Portal
      Conclusions
      Dario Zanca
      2025-05-11 Sommersemester 2025
    • #1
      Nur für Portal
      Introduction
      Naga Venkata Sai Jitin Jami
      2025-05-16 Sommersemester 2025
    • #2
      Nur für Portal
      Time-aware models
      Naga Venkata Sai Jitin Jami
      2025-05-16 Sommersemester 2025
    • #3
      Nur für Portal
      Ordinary Differential Equations (ODE)
      Naga Venkata Sai Jitin Jami
      2025-05-16 Sommersemester 2025
    • #4
      Nur für Portal
      Residual network and ODEnet
      Naga Venkata Sai Jitin Jami
      2025-05-16 Sommersemester 2025
    • #5
      Nur für Portal
      Backpropagation in ODEnet
      Naga Venkata Sai Jitin Jami
      2025-05-16 Sommersemester 2025
    • #6
      Nur für Portal
      Application of ODEnet on time series
      Naga Venkata Sai Jitin Jami
      2025-05-16 Sommersemester 2025
    • #1
      Nur für Portal
      XAI 1
      Dario Zanca
      2025-05-16 Sommersemester 2025
    • #1
      Nur für Portal
      Active Learning (SL) for Time Series - Part 1
      Dario Zanca
      2025-05-26 Sommersemester 2025
    • #1
      Nur für Portal
      Semi-Supervised Learning (SSL)
      Dario Zanca
      2025-05-26 Sommersemester 2025
    • #1
      Nur für Portal
      Domain-shifts, Ethics, and Bias
      Dario Zanca
      2025-05-26 Sommersemester 2025