Deep Learning 2019/2020 /CoursesID:849
- Most recent entry on 2020-02-04
Keywords: signals Unit approximation introduction reconstruction tasks dataset batch box research visualization confidence activations backpropagation search dependencies maps pooling auxiliary task

Organisational Unit

Lehrstuhl für Informatik 14 (Bild- und Sprachverarbeitung)

Recording type

Vorlesungsreihe

Via

Free

Language

Deep Learning (DL) has attracted much interest in a wide range of applications such as image recognition, speech recognition and artificial intelligence, both from academia and industry. This lecture introduces the core elements of neural networks and deep learning, it comprises:
  • (multilayer) perceptron, backpropagation, fully connected neural networks

  • loss functions and optimization strategies

  • convolutional neural networks (CNNs)

  • activation functions

  • regularization strategies

  • common practices for training and evaluating neural networks

  • visualization of networks and results

  • common architectures, such as LeNet, Alexnet, VGG, GoogleNet

  • recurrent neural networks (RNN, TBPTT, LSTM, GRU)

  • deep reinforcement learning

  • unsupervised learning (autoencoder, RBM, DBM, VAE)

  • generative adversarial networks (GANs)

  • weakly supervised learning

  • applications of deep learning (segmentation, object detection, speech recognition, ...)

The accompanying exercises will provide a deeper understanding of the workings and architecture of neural networks.

Associated Clips

Episode
Title
Lecturer
Updated
Via
Duration
Media
1
Deep Learning
Dr.-Ing. Vincent Christlein
2019-10-15
Free
01:08:08
2
Deep Learning
Prof. Dr. Andreas Maier
2019-10-29
Free
01:24:10
3
Deep Learning
Prof. Eva Katharina Breininger
2019-11-05
Free
01:23:24
4
Deep Learning
Prof. Eva Katharina Breininger
2019-11-12
Free
01:18:45
5
Deep Learning
Prof. Dr. Andreas Maier
2019-11-19
Free
01:05:49
6
Deep Learning
Prof. Dr. Andreas Maier
2019-11-26
Free
01:19:38
7
Deep Learning
Prof. Dr. Andreas Maier
2019-12-03
Free
01:03:29
8
Deep Learning
Prof. Dr. Andreas Maier
2019-12-10
Free
00:31:30
9
Deep Learning
Prof. Dr. Andreas Maier
2019-12-17
Free
01:22:31
10
Deep Learning
Prof. Dr. Andreas Maier
2020-01-07
Free
01:25:55
11
Deep Learning
Prof. Dr. Andreas Maier
2020-01-14
Free
01:17:39
12
Deep Learning
Prof. Dr. Andreas Maier
2020-01-21
Free
01:10:46
13
Deep Learning
Prof. Eva Katharina Breininger
2020-01-28
Free
01:17:03
14
Deep Learning
Prof. Dr. Andreas Maier
2020-02-04
Free
01:09:30

More courses from Prof. Dr. Andreas Maier

Maier, Andreas
Prof. Dr. Andreas Maier
lecture
2020-07-10
Free
Hornegger1
Prof. Dr. Andreas Maier
lecture
2012-02-07
Free
Maier, Andreas
Prof. Dr. Andreas Maier
lecture
2020-06-28
Free

More courses in this category "Technische Fakultät"

Strehl, Volker
Prof. Dr. Volker Strehl
lecture
2016-02-03
Studon
Schloss1
Prof. Dr. Dirk Schubert
lecture
2021-07-12
Studon
Franke, Jörg
Prof. Dr. Jörg Franke
lecture
2024-02-05
Studon
Schloss1
M. Sc. Michael Jüttner
lecture
2023-07-07
IdM-login
Schloss1
PD Dr. Heinz Werner Höppel
lecture
2020-05-19
Passwort