This is a course introducing modern techniques of machine learning, especially deep neural networks, to an audience of physicists. Neural networks can be trained to perform diverse challenging tasks, including image recognition and natural language processing, just by training them on many examples. Neural networks have recently achieved spectacular successes, with their performance often surpassing humans. They are now also being considered more and more for applications in physics, ranging from predictions of material properties to analyzing phase transitions. We will cover the basics of neural networks, convolutional networks, autoencoders, restricted Boltzmann machines, and recurrent neural networks, as well as the recently emerging applications in physics.
Semester
Sommersemester 2019
Lehrenden
Zugang via
Offener Zugang
aktualisiert
2019-05-15 07:51:53
Abonnements
2
-
1Machine Learning for PhysicistsProf. Dr. Florian Marquardt2019-04-24 Sommersemester 2019Offener Zugang
-
2Machine Learning for PhysicistsProf. Dr. Florian Marquardt2019-05-06 Sommersemester 2019Offener Zugang
-
3Machine Learning for PhysicistsProf. Dr. Florian Marquardt2019-05-13 Sommersemester 2019Offener Zugang
-
4Machine Learning for PhysicistsProf. Dr. Florian Marquardt2019-05-15 Sommersemester 2019Offener Zugang
-
5Machine Learning for PhysicistsProf. Dr. Florian Marquardt2019-05-27 Sommersemester 2019Offener Zugang
-
6Machine Learning for PhysicistsProf. Dr. Florian Marquardt2019-06-03 Sommersemester 2019Offener Zugang
-
7Machine Learning for PhysicistsProf. Dr. Florian Marquardt2019-06-05 Sommersemester 2019Offener Zugang
-
8Machine Learning for PhysicistsProf. Dr. Florian Marquardt2019-06-17 Sommersemester 2019Offener Zugang
-
9Machine Learning for PhysicistsProf. Dr. Florian Marquardt2019-06-19 Sommersemester 2019Offener Zugang
-
10Machine Learning for PhysicistsProf. Dr. Florian Marquardt2019-07-01 Sommersemester 2019Offener Zugang
-
11Machine Learning for PhysicistsProf. Dr. Florian Marquardt2019-07-03 Sommersemester 2019Offener Zugang