Seminar Meta Learning (SemMeL) [SerienID : 1867]
Prerequisites / Organisational information
Registration via StudOn: https://www.studon.fau.de/crs3330572.html
Examples of meta-learning methods include algorithms which design neural network architectures based on data, optimize the performance of a learning algorithm or exploit commonalities between tasks to enable learning from few samples on unseen tasks.
These methods hold the promise to automate machine learning even further than learning good representations from data by learning algorithms to learn even better representations.
Zhou et al., "Meta-learning symmetries by reparameterization", Arxiv
Snell et al., "Prototypical networks for few-shot learning", Neurips 2017
Triantafillou et al., "Meta-dataset: A dataset of datasets for learning to learn from few examples", ICLR 2020
Vinyals et al., "Matching networks for one shot learning. ", Neurips 2016
Zoph et al. "Neural Architecture Search with Reinforcement Learning", Journal of Machine Learning Research 20 (2019)
Bengio et al., "A meta-transfer objective for learning to disentangle causal mechanisms", ICLR 2020
Santoro et al., "Meta-Learning with Memory-Augmented Neural Networks", ICML 2016
Ravi et al., "Optimization as a model for few-shot learning", ICLR 2016 Munkhdalai et al., "Meta Networks", ICML 2017
Sung et al. "Learning to Compare: Relation Network for Few-Shot Learning", CVPR 2018
Nichol et al. "On First-Order Meta-Learning Algorithms", Arxiv
Contents Meta-learning refers to algorithms which aim to learn an aspect of a learning algorithm from data.
Examples of meta-learning methods include algorithms which design neural network architectures based on data, optimize the performance of a learning algorithm or exploit commonalities between tasks to enable learning from few samples on unseen tasks.
These methods hold the promise to automate machine learning even further than learning good representations from data by learning algorithms to learn even better representations.
The seminar will cover the most important works which provide the cornerstone knowledge to understand cutting edge research in the field of meta-learning. Applications will include:
-
Learning from few samples
-
Automatically tuning neural network architectures
-
Determining appropriate equivariances
-
Disentangling causal mechanisms
Recommended literature Finn et al., "Model-agnostic meta-learning for fast adaptation of deep networks", ICML 2017
Zhou et al., "Meta-learning symmetries by reparameterization", Arxiv
Snell et al., "Prototypical networks for few-shot learning", Neurips 2017
Triantafillou et al., "Meta-dataset: A dataset of datasets for learning to learn from few examples", ICLR 2020
Vinyals et al., "Matching networks for one shot learning. ", Neurips 2016
Zoph et al. "Neural Architecture Search with Reinforcement Learning", Journal of Machine Learning Research 20 (2019)
Bengio et al., "A meta-transfer objective for learning to disentangle causal mechanisms", ICLR 2020
Santoro et al., "Meta-Learning with Memory-Augmented Neural Networks", ICML 2016
Ravi et al., "Optimization as a model for few-shot learning", ICLR 2016 Munkhdalai et al., "Meta Networks", ICML 2017
Sung et al. "Learning to Compare: Relation Network for Few-Shot Learning", CVPR 2018
Nichol et al. "On First-Order Meta-Learning Algorithms", Arxiv
Semester
Wintersemester 2020/2021
Lehrenden
Zugang via
Offener Zugang, Nur für Portal, Passwortgeschützt, StudOn-Zugang
aktualisiert
2020-11-02 23:55:14
Abonnements
2
-
# 1Nur für Portal, PasswortgeschütztSeminar Meta Learning (SemMeL) - Good Scientific PresentationsProf. Dr. Andreas Maier2020-11-02 Wintersemester 2020/20211Seminar Meta Learning (SemMeL) - Good Scientific PresentationsProf. Dr. Andreas Maier2020-11-02 Wintersemester 2020/2021Nur für Portal, PasswortgeschütztGesperrt clip
-
# 2Offener ZugangSeminar Meta Learning (SemMeL) - Arka Nandi - Model-Agnostic Meta-Learning for Fast Adaptation of Deep NetworksProf. Dr. Andreas Maier2020-11-16 Wintersemester 2020/20212Seminar Meta Learning (SemMeL) - Arka Nandi - Model-Agnostic Meta-Learning for Fast Adaptation of Deep NetworksProf. Dr. Andreas Maier2020-11-16 Wintersemester 2020/2021Offener Zugang
-
# 3Nur für PortalSeminar Meta Learning (SemMeL) - Benjamin Geissler - Meta-learning symmetries by reparameterizationProf. Dr. Andreas Maier2020-11-30 Wintersemester 2020/20213Seminar Meta Learning (SemMeL) - Benjamin Geissler - Meta-learning symmetries by reparameterizationProf. Dr. Andreas Maier2020-11-30 Wintersemester 2020/2021Nur für PortalGesperrt clip
-
# 4Offener ZugangSeminar Meta Learning (SemMeL) - Jonas Utz - Prototypical Networks for Few-shot LearningProf. Dr. Andreas Maier2020-11-23 Wintersemester 2020/20214Seminar Meta Learning (SemMeL) - Jonas Utz - Prototypical Networks for Few-shot LearningProf. Dr. Andreas Maier2020-11-23 Wintersemester 2020/2021Offener Zugang
-
# 5Nur für PortalSeminar Meta Learning (SemMeL) - Nicolas Krieg - Meta Dataset - A Dataset of Datasets for Meta LearningProf. Dr. Andreas Maier2020-11-30 Wintersemester 2020/20215Seminar Meta Learning (SemMeL) - Nicolas Krieg - Meta Dataset - A Dataset of Datasets for Meta LearningProf. Dr. Andreas Maier2020-11-30 Wintersemester 2020/2021Nur für PortalGesperrt clip
-
# 6Nur für Portal, StudOn-ZugangSeminar Meta Learning (SemMeL) - Juilee Kulkarni - Meta Dataset - Matching networks for one shot learningProf. Dr. Andreas Maier2020-12-08 Wintersemester 2020/20216Seminar Meta Learning (SemMeL) - Juilee Kulkarni - Meta Dataset - Matching networks for one shot learningProf. Dr. Andreas Maier2020-12-08 Wintersemester 2020/2021Nur für Portal, StudOn-ZugangGesperrt clip
-
# 7Offener ZugangSeminar Meta Learning (SemMeL) - Anil Bora Yayak - Neural Architecture Search with Reinforcement LearningProf. Dr. Andreas Maier2020-12-14 Wintersemester 2020/20217Seminar Meta Learning (SemMeL) - Anil Bora Yayak - Neural Architecture Search with Reinforcement LearningProf. Dr. Andreas Maier2020-12-14 Wintersemester 2020/2021Offener Zugang
-
# 8Nur für PortalSeminar Meta Learning (SemMeL) - Lena Eichermüller - A Meta-Transfer Objective for Learning to Disentangle Causal MechanismsProf. Dr. Andreas Maier2020-12-25 Wintersemester 2020/20218Seminar Meta Learning (SemMeL) - Lena Eichermüller - A Meta-Transfer Objective for Learning to Disentangle Causal MechanismsProf. Dr. Andreas Maier2020-12-25 Wintersemester 2020/2021Nur für PortalGesperrt clip
-
# 9Nur für Portal, PasswortgeschütztSeminar Meta Learning (SemMeL) - Nupur Patel - Meta-Learning with Memory-Augmented Neural NetworksProf. Dr. Andreas Maier2021-01-13 Wintersemester 2020/20219Seminar Meta Learning (SemMeL) - Nupur Patel - Meta-Learning with Memory-Augmented Neural NetworksProf. Dr. Andreas Maier2021-01-13 Wintersemester 2020/2021Nur für Portal, PasswortgeschütztGesperrt clip
-
# 10Offener ZugangSeminar Meta Learning (SemMeL) - Jingwei Song - Optimization as a Model for Few-Shot LearningProf. Dr. Andreas Maier2021-01-18 Wintersemester 2020/202110Seminar Meta Learning (SemMeL) - Jingwei Song - Optimization as a Model for Few-Shot LearningProf. Dr. Andreas Maier2021-01-18 Wintersemester 2020/2021Offener Zugang
-
# 11Offener ZugangSeminar Meta Learning (SemMeL) - Balaka Dutta - Meta NetworksProf. Dr. Andreas Maier2021-02-01 Wintersemester 2020/202111Seminar Meta Learning (SemMeL) - Balaka Dutta - Meta NetworksProf. Dr. Andreas Maier2021-02-01 Wintersemester 2020/2021Offener Zugang
-
# 12Nur für PortalSeminar Meta Learning (SemMeL) - Swetha Ramesh - Learning to Compare: Relation Network for Few-Shot LearningProf. Dr. Andreas Maier2021-02-01 Wintersemester 2020/202112Seminar Meta Learning (SemMeL) - Swetha Ramesh - Learning to Compare: Relation Network for Few-Shot LearningProf. Dr. Andreas Maier2021-02-01 Wintersemester 2020/2021Nur für PortalGesperrt clip
-
# 13Nur für PortalSeminar Meta Learning (SemMeL) - Andre Cakici - MetaPred: Meta-Learning for Clinical Risk Prediction with Limited Patient Electronic Health RecordsProf. Dr. Andreas Maier2021-02-08 Wintersemester 2020/202113Seminar Meta Learning (SemMeL) - Andre Cakici - MetaPred: Meta-Learning for Clinical Risk Prediction with Limited Patient Electronic Health RecordsProf. Dr. Andreas Maier2021-02-08 Wintersemester 2020/2021Nur für PortalGesperrt clip