25 - Deep Learning - Plain Version 2020/ClipID:21121 previous clip next clip

The automatic subtitles generated using Whisper Open AI in this video player (and in the Multistream video player) are provided for convenience and accessibility purposes. However, please note that accuracy and interpretation may vary. For more information, please refer to the FAQs (Paragraph 14).
Recording date 2020-10-12

Via

Free

Language

English

Organisational Unit

Lehrstuhl für Informatik 5 (Mustererkennung)

Producer

Lehrstuhl für Informatik 5 (Mustererkennung)

Format

lecture

Deep Learning - Common Practices Part 4

This video discusses how to evaluate deep learning approaches.

For reminders to watch the new video follow on Twitter or LinkedIn.

Further Reading:
A gentle Introduction to Deep Learning

References:
[1] M. Aubreville, M. Krappmann, C. Bertram, et al. “A Guided Spatial Transformer Network for Histology Cell Differentiation”. In: ArXiv e-prints (July 2017). arXiv: 1707.08525 [cs.CV].
[2] James Bergstra and Yoshua Bengio. “Random Search for Hyper-parameter Optimization”. In: J. Mach. Learn. Res. 13 (Feb. 2012), pp. 281–305.
[3] Jean Dickinson Gibbons and Subhabrata Chakraborti. “Nonparametric statistical inference”. In: International encyclopedia of statistical science. Springer, 2011, pp. 977–979.
[4] Yoshua Bengio. “Practical recommendations for gradient-based training of deep architectures”. In: Neural networks: Tricks of the trade. Springer, 2012, pp. 437–478.
[5] Chiyuan Zhang, Samy Bengio, Moritz Hardt, et al. “Understanding deep learning requires rethinking generalization”. In: arXiv preprint arXiv:1611.03530 (2016).
[6] Boris T Polyak and Anatoli B Juditsky. “Acceleration of stochastic approximation by averaging”. In: SIAM Journal on Control and Optimization 30.4 (1992), pp. 838–855.
[7] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. “Searching for Activation Functions”. In: CoRR abs/1710.05941 (2017). arXiv: 1710.05941.
[8] Stefan Steidl, Michael Levit, Anton Batliner, et al. “Of All Things the Measure is Man: Automatic Classification of Emotions and Inter-labeler Consistency”. In: Proc. of ICASSP. IEEE - Institute of Electrical and Electronics Engineers, Mar. 2005.

Up next

Maier, Andreas
Prof. Dr. Andreas Maier
2020-10-12
Free
Maier, Andreas
Prof. Dr. Andreas Maier
2020-10-12
Free
Maier, Andreas
Prof. Dr. Andreas Maier
2020-10-12
Free
Maier, Andreas
Prof. Dr. Andreas Maier
2020-10-12
Free
Maier, Andreas
Prof. Dr. Andreas Maier
2020-10-12
Free

More clips in this category "Technische Fakultät"

2024-07-19
Studon
protected  
2024-07-19
Studon
protected  
2024-07-19
IdM-login
protected  
2024-07-18
Free
public  
2024-07-19
Studon
protected