9 - Seminar Meta Learning (SemMeL) - Nupur Patel - Meta-Learning with Memory-Augmented Neural Networks [ID:27748]
clip player preview

Dieser Clip ist ausschließlich für angemeldete Benutzer zugänglich.

oder

Für diesen Clip ist ein Passwort erforderlich. Bitte kontaktieren Sie die Administratoren der Videoserie.

Entsperren Clip
Seminar Meta Learning (SemMeL) - Nupur P...

Enter the password to access this protected clip.

Teil einer Videoserie :

Zugänglich über

Nur für Portal, Passwortgeschützt

Gesperrt clip

Dauer

00:34:58 Min

Aufnahmedatum

2021-01-13

Hochgeladen am

2021-01-13 10:18:52

Sprache

en-US

Abstract
Despite recent breakthroughs in the applications of deep neural networks, one setting that presents a persistent challenge is that of "one-shot learning." Traditional gradient-based networks require a lot of data to learn, often through extensive iterative training. When new data is encountered, the models must inefficiently relearn their parameters to adequately incorporate the new information without catastrophic interference. Architectures with augmented memory capacities, such as Neural Turing Machines (NTMs), offer the ability to quickly encode and retrieve new information, and hence can potentially obviate the downsides of conventional models. Here, we demonstrate the ability of a memory-augmented neural network to rapidly assimilate new data, and leverage this data to make accurate predictions after only a few samples. We also introduce a new method for accessing an external memory that focuses on memory content, unlike previous methods that additionally use memory location-based focusing mechanisms.

Paper Link
http://proceedings.mlr.press/v48/santoro16.html

Tags

meta learning