6 - Seminar Meta Learning (SemMeL) - Juilee Kulkarni - Meta Dataset - Matching networks for one shot learning [ID:26080]
clip player preview

Dieser Clip ist ausschließlich für angemeldete Benutzer zugänglich.

oder

Der Zugang zu diesem Clip ist auf StudOn-Kursteilnehmer beschränkt.

Teil einer Videoserie :

Zugänglich über

Nur für Portal, StudOn-Zugang

Gesperrt clip

Dauer

00:35:18 Min

Aufnahmedatum

2020-12-08

Hochgeladen am

2020-12-08 19:39:38

Sprache

en-US

Abstract: Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.

https://arxiv.org/abs/1606.04080

Tags

meta learning