Machine learning basics. 2.3 - ML Pipeline and good practices/ClipID:37186 previous clip next clip

Recording date 2021-10-26

Lecturer

Dario Zanca

Via

IdM-login / Studon

Language

English

Organisational Unit

Friedrich-Alexander-Universität Erlangen-Nürnberg

Producer

Friedrich-Alexander-Universität Erlangen-Nürnberg

A 5-step ML pipeline, from problem definition to model deployment and performance monitoring. 

Up next in Chapter

Schloss1
Dario Zanca
2021-10-26
IdM-login / Studon
Amft
Dr. Luis Ignacio Lopera Gonzalez
2021-11-02
IdM-login / Studon
Amft
Dr. Luis Ignacio Lopera Gonzalez
2021-11-02
IdM-login / Studon

More clips in this category "Friedrich-Alexander-Universität Erlangen-Nürnberg"

2021-11-29
IdM-login
protected  
2021-11-29
Studon
protected  
2021-11-29
IdM-login
protected  
2021-11-29
Studon
protected